MicroRNA-146a inhibits cell migration and invasion by targeting RhoA in breast cancer
نویسندگان
چکیده
MicroRNAs (miRNAs) function as genetic modulators that regulate gene expression and are involved in a wide range of biological roles, including tumor cell migration and invasion. In the present study, we demonstrated that the migration and invasion activity in MDA-MB-231 breast cancer cells could be directly influenced by altering miR-146a expression. The expression of RhoA and miR-146a in the breast cancer cells showed an inverse correlation. Upregulation of miR-146a in the MDA-MB‑231 breast cancer cells by transfection of miR-146a mimics resulted in decreased RhoA protein levels. Conversely, downregulation of miR-146a by transfection of miR-146a inhibitor resulted in increased RhoA protein levels. To confirm the fact that RhoA is a potential target of miR-146a, luciferase reporter containing the RhoA 3' untranslated region (3'UTR) was constructed. The results demonstrated that the luciferase reporter activity was reduced after overexpression of miR-146a. Moreover, the luciferase reporter which was constructed with the RhoA 3'UTR mutant did not show significantly altered luciferase reporter activity. Furthermore, after treatment with the RhoA inhibitor exoenzyme C3 transferase protein, the migratory capacity of the MDA-MB-231 cells was not significantly altered even though the amount of miR-146a was changed. Our results indicate that miR-146a functions as a tumor suppressor in breast cancer cells. Downregulation of the expression of miR-146a increased the migration of MDA-MB-231 cells, due to the upregulation of RhoA expression.
منابع مشابه
Inhibition of breast cancer metastasis by co-transfection of miR-31/193b-mimics
Objective(s): Various studies have been conducted to reduce the metastatic behavior of cancerous cells. In this regard, ectopic expression of anti-metastatic microRNAs by miR-mimic and miR-restoration-based therapies could bring new insights to the field. In the present study, the consequences of co-transfecting breast cancer cell lines with miR-193b and miR-31 were investigated via invasion an...
متن کاملshRNA-mediated downregulation of α-N-Acetylgalactosaminidase inhibits migration and invasion of cancer cell lines
Objective(s): Extracellular matrix (ECM) is composed of many kinds of glycoproteins containing glycosaminoglycans (GAGs) moiety. The research was conducted based on the N-Acetylgalactosamine (GalNAc) degradation of ECM components by α-N-acetylgalactosaminidase (Nagalase) which facilitates migration and invasion of cancer cells. This study aims to investigate the effects of Naga-shRNA downregula...
متن کاملmiR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer
Objective(s): Ten-eleven translocation (TET) family members have been shown to be involved in the development of many tumors. However, the biological role of the TET family and its mechanism of action in colorectal carcinogenesis and progression remain poorly understood. Materials and Methods:We measured the expression levels of TET family members in colorectal cancer (CRC) specimens, in the c...
متن کاملMicroRNA-146a inhibits epithelial mesenchymal transition in non-small cell lung cancer by targeting insulin receptor substrate 2.
During cancer progression, some tumor cells show changes in their plasticity by morphological and phenotypical conversions, as an expression of mesenchymal markers and loss of epithelial markers, collectively referred to as epithelial-mesenchymal transition (EMT). EMT has been increasingly recognized as a critical phenomenon in lung cancer progression. The goal of this study was to identify mic...
متن کاملMicroRNA-33b Inhibits Breast Cancer Metastasis by Targeting HMGA2, SALL4 and Twist1
MicroRNAs are a class of small noncoding RNAs that regulate gene expression post-transcriptionally either by inhibiting protein translation or by causing the degradation of target mRNAs. Current evidence indicates that miR-33b is involved in the regulation of lipid metabolism, cholesterol homeostasis, glucose metabolism and several human diseases; however, whether miR-33b contributes to the pat...
متن کامل